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Abstract. Colloidal spheres interacting via a purely repulsive potential provide an excellent model
system to study the kinetics of solidification from the melt. Such systems are readily accessible
by comparably simple yet powerful optical methods like time resolved static light scattering and
microscopy, reviewed in the first part of this paper. We then present results from our own recent
studies within a framework of data available from literature. In particular we investigated nucleation
and growth of hard sphere crystals using combined Bragg and small angle light scattering and of
charged sphere crystals using Bragg microscopy. Special attention is given to the range of validity
of classical nucleation theory and of Wilson Frenkel growth and a discussion of kinetic prefactors
for both processes.

1. Introduction

The kinetics of crystallization are a long standing fundamental problem in condensed matter
physics [1]. Although considerable progress has been achieved through the use of novel or
refined experimental techniques [2–4], theoretical efforts and computer simulations [5, 6], and
the study of model systems [7–9] a comprehensive understanding is still lacking. In this review
the focus is on recent work with colloidal model systems well suited to investigate the kinetics
of freezing, i.e. suspensions of spherical particles interacting via a purely repulsive potential. In
these significantly different boundary conditions are encountered, while the underlying physics
are much the same as in atomic or molecular melts [10, 11]. For several reasons colloidal
systems are excellently suited to study the basic phenomena of solidification. However, the
final success of such studies and the gained improved understanding is aimed at the transfer
of concepts back to atomic systems and forward towards the design of new materials [12, 13].
The paper is organized as follows. The next section gives a short motivating outline of the
relevant similarities and differences between colloidal and atomic systems. The third section
introduces a variety of optical methods employed to study colloidal crystallization kinetics
with a special emphasis on scattering methods. In the fourth and fifth sections experiments on
hard and charged sphere suspensions are presented, and compared to data from literature and
theoretical concepts.

2. Colloidal suspensions as model systems for solidification experiments

The analogy between atomic and colloidal fluids, crystals and glasses often allows us to address
the latter as conveniently enlarged model system of the former. To show this we first take a
look at the phase behaviour of both kinds of system from a more theoretical point of view.
In general, liquids subjected to temperatures below their freezing temperature or to pressures
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larger than their freezing pressure will undergo a first order phase transition to the crystalline
state. Likewise crystallization occurs from supersaturated solutions. Attraction in the pair
interaction or in the potential of mean force generally plays an important role as it introduces
large density differences between disordered and ordered phases. However, it became clear
from theoretical arguments that attraction in the first place generates van der Waals-like loops
in the pressure–density phase diagram. Thus stable liquids are formed in the temperature range
between the triple temperature and critical temperature [14, 15]. Interestingly, by tuning the
range and amplitude of the attraction as compared to the repulsion the position of the critical
point may be shifted into the fluid–solid coexistence regime or even on the solid side [16–18].
The somewhat counter-intuitive prediction then is the absence of a liquid phase—as for C60

[19]—or the appearance of a symmetry conserving solid–solid phase transition. It was also
found that for one component systems repulsion alone is sufficient to induce ordering (see e.g.
[20]) and that the phase transition shifts to lower densities if the repulsion between particles
is enhanced. Two prominent examples are the entropy driven crystallization of hard spheres
(HSs) leading to face centred cubic (fcc) crystals [21] and the one component plasma (OCP)
undergoing Wigner crystallization into body centred cubic (bcc) lattices, if the interaction
parameter0 > 178.

Colloidal fluids on the other hand will undergo crystallization at constant temperature and
ambient pressure, if the interaction between the particles becomes large enough [11, 22, 23].
In the case of HS suspensions the packing fraction8 is the only relevant parameter [24, 25].
Charged spheres (CSs) interact via a screened Coulomb potential. There in addition to the
number density of particlesn = 38/4πa3—wherea is the particle radius—the particle charge
and the concentration of screening electrolytec can be used to adjust the strength and steepness
of the repulsion over a wide range between the theoretical limits of HS and OCP [26]. So-called
depletion attraction may be introduced into the potential of mean force by adding a second
component [27, 28]. This may be a non-adsorbing polymer, a polyelectrolyte or a second kind
of much smaller particle. Recent theoretical work seems to indicate that under some conditions
also the small ions present in charged systems may induce such an attraction [29]. In most
cases it leads to a competition between phase separation and ordering kinetics which is of great
practical relevance e.g. in the crystallization of proteins. It, however, introduces a number of
further complications and also only few experimental data are as yet available [30]. In this
review therefore only purely repulsive systems are considered in detail.

Secondly the kinetics of crystallization in both atomic and colloidal systems are controlled
by the exponential dependence on the ratio between some intrinsic energy scale and the thermal
energykBT . From this observation the classical rate equations result which for instance give
the nucleation rate density J as:

J = J0 exp(−1G∗/kBT ) (1)

where1G∗ is the height of the nucleation barrier andJ0 a kinetic prefactor [5, 31, 32]. Reaction
limited growth velocities should follow a Wilson–Frenkel (WF) type behaviour [33]:

v = v∞[1− exp(−1µ/kBT )] (2)

wherev∞ is the limiting velocity for infinite chemical potential difference1µ between melt
and solid. In atomic systems1µ shows only a slight dependence on the degree of undercooling
(expressed asT ∗ = (T −TM)/T ) via the entropy of freezing. For colloids the intrinsic energy
scale may be significantly altered by adjusting the interaction potential. For a given sample
1µ has to be determined experimentally or via computer simulation. The nucleation barrier
1G∗ = 16πγ 3/3(1µn)2. Hereγ is the surface tension between melt and solid which for
HSs should be on the order ofkBT /a2.
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Kinetic prefactors of atomic systems depend on temperature e.g. via a Maxwellian
distribution of velocities. Additional modifications are necessary if an activated step is involved
[34]. While temperature is the natural control parameter in atomic systems, colloidal systems
crystallize quasi-isothermally. Here diffusive transport determines the kinetic prefactor.
Growth is assumed to proceed via single particle attachment or—in the case of layering of
the melt to the solid—by registering of adjacent planes. In both casesv∞ = DdI/l2, whereD
is an appropriate diffusion coefficient,dI the thickness of the interfacial region andl the mean
distance of fluid particles from their target place in the crystal. The prefactor in nucleation
should be given byJ0 = nD/l2, which approximatingl by n−1/3 leads to a85/3 dependence.

Further in both kinds of system there is a competition between the time scale of
equilibrating the control parameter throughout the system and its rate of change. This poses
two fundamental difficulties. In nucleation during rapid quenches systems may not have
time to evolve the control parameter dependent equilibrium distribution of fluctuations [32].
Experimental results thus may depend on the quench history. In addition, the transition itself
may introduce local deviations from the initially adjusted global conditions. This concerns the
release of latent heat in crystallization from the melt and the formation of depletion zones in
crystallization from both solution and melt [35, 36]. As a consequence to growth instabilities
like dendritic growth or secondary nucleation may result [37]. Owing to the presence of the
suspending medium acting as an excellent heat sink colloidal crystallization proceeds quasi-
isothermally. However, depletion zones and growth instabilities via density fluctuations are
encountered, too.

A final important point is the accessibility by various approaches. Critical nuclei comprise
some 102 to 104 particles and interfacial thicknesses about ten particle layers above the
roughening transition. Thus the relevant length scales in both these cases are of the order
of a few particle distances. This is no serious restriction to theoretical modelling and, in fact,
a lot of progress has been achieved throughout recent years through e.g. the use of density
functional methods [5, 6]. For experiments on atomic and molecular melts, however, it poses a
formidable challenge. In addition, the short absolute time scales, the difficulties of controlling
the temperature and the unavoidable presence of attractive interactions considerably complicate
the situation.

Alternatively, computer simulations allow for variation of interaction potential, local
control of temperature and microscopic modelling of events. In particular, growth was
extensively studied for Lennard-Jones particles under stationary conditions and the WF growth
law confirmed at moderate undercoolings [34]. In addition the interfacial structures could be
determined for different crystallographic directions [38]. Isolated nucleation events are much
more difficult to simulate due to the influence of the periodic boundary conditions [39, 40, 41].
In sufficiently large systems on the other hand nucleation is a rare event and special sampling
techniques have to be employed to generate good statistics and/or to avoid the crystallization
of the complete box from a single nucleus [42]. Besides estimates of nucleation rates also
the nucleation path can be studied in quite some detail. For a system of spheres with anr−12

potential it was for instance observed that bcc nuclei form much more easily, as the nucleation
barrier height is much smaller than for fcc even when fcc is the thermodynamically stable
phase [43].

Colloid specific length scales are of the order of the wavelength of visible light and thus
allow for access via microscopy and light scattering yielding complementary information
from real and reciprocal space [7, 8, 44]. For Brownian dynamics the typical time for a non-
interacting particle to diffuse the distance of its own radiusa is in the millisecond range and
may be calculated from the Stokes–Einstein diffusion coefficientD0 = kBT /6πηa, where
η is the shear viscosity. Both direct interactions leading to structure formation [6, 10, 45]
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and hydrodynamic interactions slow down the diffusive motion [25, 46], but in most cases
the self-diffusion coefficients differ by only a few orders of magnitude in different phases.
In combination with the low particle density of typically 1011–1014 cm−3 (as compared to
1021 cm−3 in metals) this leads to a condensation of all relevant time scales for nucleation,
growth and ripening to the narrow range of seconds to hours. Furthermore the solids may
easily be shear molten e.g. by simply shaking the sample [47]. This is traced back to their
extremely low shear modulus which is on the order of a few Pa only [48]. Whereas the
energies of interaction are of the same order as in atomic systems (which results in thermally
stable crystals) the low shear rigidity is caused by the low particle densities. Consequently
metastable melts can be prepared from well characterized solids without gradients in the control
parameters.

Colloidal suspensions thus have been recognized as versatile model systems for the study
of phase transition kinetics and much progress has been reported over the last years. Yet
these systems also introduce their own specific complications, like a distribution in particle
size, a complex time and length scale dependence of transport processes, the very fragile
nature of colloidal solids or the need to develop special techniques of sample preparation and
investigation. In the next section we review the most important optical methods for the study
of solidification kinetics.

3. Experimental techniques

A homogeneous colloidal melt can be prepared by application of random shear. Shortly
after cessation of shear only short range order is present throughout the sample. If impurity
nucleation is suppressed by filtering, nuclei may form by wall induced nucleation or by
homogeneous nucleation in the bulk. By choosing a suitable cell geometry, each of these
scenarios may be made dominant [49]. At the beginning of the homogeneous nucleation
process a random distribution of denser crystals in pressure equilibrium with the adjacent melt
may be assumed. Inter-crystal ordering may occur, once interactions between neighbouring
nuclei are present. This may be caused by an approach of crystal surfaces (respectively
depletion zones) during the late stages of solidification, by large nucleation rate densities or
by an underlying spinodal type decomposition. The latter has not been systematically studied;
however recent observations on very highly charged systems and on mixtures seem to support
this possibility [50]. A further heterogeneity is observed concerning the orientation of crystals
which again in most cases is random. The orientation correlation between crystals usually
stays close to zero even if at late stages the position correlation increases. After complete
solidification crystals are separated by grain boundaries, while in the coexistence region also
bulk fluid remains. Further evolution of crystal shape and size is due to ripening and proceeds
on comparably slow time scales.

Both light scattering and microscopy yield valuable information on the kinetics of
solidification, as they may be adapted to the specific questions of interest. For example,
growth is readily studied by microscopy, while nucleation kinetics have been investigated
mainly by scattering techniques. In the following we outline both experiments as well as
combined methods.

3.1. Scattering

The treatment of static and dynamic light scattering [51–53] is in many respects highly
analogous to that of neutron or x-ray scattering [14, 54–56]. In our experiments we use an
apparatus recording both Bragg scattering (BS) and small angle light scattering (SALS) [57].
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We first treat polarized single scattering from long and short range ordered particles, and then
consider SALS from density fluctuations, i.e. denser crystals as compared to the melt which
itself may be of inhomogeneous density due to the formation of depletion zones.

We start by assuming the incoming beam to be a linearly polarized plane wave:E(r) =
E0 exp(iki ·r), where the time dependence is omitted, since we consider elastic scattering only.
The primary wave is incident onN spherical particles of radiusa contained in the scattering
volumeVS centred aroundr0 = (0, 0, 0). We further assume a homogeneous distribution of
particle number densityn = N/VS . Far from the sample the superimposed scattered fields
may again be considered as a plane wave. The difference between incoming and scattered
wave vector defines the scattering vector:

|q| = |k0 − kS | = (4πνS/λ0) sin(2/2) (3)

where2 is the scattering angle as defined in figure 1,νS is the solvent refractive index andλ0

the vacuum wavelength of the (laser) light. Restricting ourselves to single scattering events
only, the scattered intensity is [52]:

I (q) = CP(q)S(q) (4)

with the constantC:

C = VSI0

R2
D

k4
i

(4π)2
N

VS
(n0 − nS)2b(0)2 (5)

which comprises the geometry of the scattering experiment and the optical properties of the
particle material. HereI0 = 1

2(εs/µ0)
1/2E2

0 is the incident intensity,RD is the distance between
scattering volumeVS and the detector,n0 andnS are the polarization vectors of incident and
scattered light, respectively. The particle scattering amplitude at zero wave vector is given
by the difference in refractive indices of particles and solvent times the particle volume:
b(0) = (νP − νS)(4/3)πa3. The particle form factorP(q) = b(q)2/b(0)2 is normalized
by b(0)2 to result inP(0) = 1. It describes the angle dependence of single particle scattering.
To be specific, for small polystyrene spheres(νP = 1.590) of a < 60 nm in water(νS = 1.333)
it often is sufficient to use the Rayleigh–Debye–Gans approximation for smallq data:

b(q) = 4π(νP − νS)
q3

(sin(qa)− qa cos(qa)). (6)

Polydispersity, bimodal mixtures, deviations from spherical shape and the corresponding
influence of particle orientation may be treated within extensions of this approximation
[46]. For larger particles and those with radial variations inνP Mie scattering theory
applies.

S(q) contains all the information about the particle positionsri . It is defined as:

S(q) ≡ 1

N

N∑
i=1

N∑
j=1

〈exp(iq · (ri − rj ))〉 (7)

where the brackets〈. . .〉 denote the ensemble average.S(q) differs for differently structured
phases. Throughout solidification crystallites coexist with remaining fluid. If particle positions
in different phases are uncorrelated, in reciprocal space an incoherent superposition of melt
and crystal scattering is observable.

In the isotropic melt colloidal particles possess short range order only. The particle
positions are usually represented as the conditional probability to find a second particle at a
distancer, if a first particle is at the origin. This radial distribution functiong(r)may be taken
from computer simulations or calculated from integral equations of Ornstein–Zernicke type
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(d)

Figure 1. (a) Scheme of a light scattering experiment. S: sample; D: detector;2: scattering angle.
(b) Scattering vector. (c) Scattering volume. (d) Scheme of Bragg reflections for different crystal
structures.

with appropriate closures [46]. The scattering probability depends only on the modulus ofq
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(a)

(b) (c) (d)

Figure 2. (a) Recording of two dimensional scattering pattern from single crystals. L: laser beam;
C: sample cell; S translucent screen; the coordinate system identifies flow directionv, gradient
direction∇and vorticity directione. Scattering patterns taken for PS120 at (b)n = 2.5×1018 m−3

(c) n = 3.7× 1018 m−3 (d) n = 6× 1018 m−3. Lines intersecting at 60◦ are guides to the eye
[48].

and the melt or fluid structure factor is written as [52]:

SF (q) = 1 +n
∫
VS

drg(r) exp(iq · r) = 1 +n
∫
VS

dr(g(r)− 1) exp(iq · r)

+n
∫
VS

dr exp(iq · r). (8)

The first integral is independent of the scattering volume and is conventionally identified with
the static structure factorSF (q) measured atq 6= 0. In the limit of q → 0 it is connected
to the isothermal compressibility. It shows pronounced oscillations forq > dNN , where
dNN = n−1/3 is the average nearest neighbour distance, and approaches 1 forq → ∞. The
second term contains information aboutVS and forVS = ∞ contributes a delta function at
the origin:S(0) = nVS = N . For smallVS this peak will be broadened according to the size
and shape ofVS . SF (q > 0) is not altered as long as the size ofVS is larger than the order
correlation length in the melt.

For long ranged crystalline order the distribution of particlesρ(r) is a periodic function.
In reciprocal space this corresponds to a set of lattice vectorsghkl = hb1 + kb2 + lb3 forming
the reciprocal lattice (whereh, k, l are the Miller indices). From the squared modulus of the
Fourier transform ofρ(r) an ideal crystalline structure factorS0

C(q) may be derived. For the
infinite crystal this is a set of delta functions. Intensity is observed wheneverq = ghkl , i.e.
when the Ewald sphere intersects withS0

C(q). For lattices with more than one lattice point per
unit cell (like bcc or fcc) selection rules determine theh, k, l for which scattering is observed
(cf figure 1(d)).
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(a) (b)

Figure 3. (a) Scattering pattern recorded in a thick cell during solidification of PS109. (b) Sketch
of the corresponding situation in real space. L: laser beam; shaded region: crystalline phase.

Single crystals may be grown via heterogeneous wall nucleation. To identify their structure
and orientation the symmetry of two dimensional scattering patterns may be exploited, e.g.
using the simple set-up sketched in figure 2(a). The intensity distribution is observed on a
translucent screen by a CCD camera to result in video frames as given in figure 2(b)–(d)
taken across the bcc/fcc phase transition after complete solidification. Twinned fcc and bcc
structures are identified which are oriented with their densest packed planes〈111〉 and(110)
perpendicular to the laser beam. The direction of easiest shear within these planes〈111〉 is
oriented parallel to the formerly applied shear flow direction. Additional information on the
real space distribution of scatterers is obtained, if no focusing optics are used at all. Figure 3(a)
shows the scattering pattern recorded during solidification in a thick cell corresponding to the
situation schematically drawn in figure 3(b). Here, the ring pattern originates from the fluid
phase; the six doublets are generated by the two growing wall crystals on the cell front and
rear. A similar thick cell set-up has been used to determine the spatial distribution of phases
in solidification under flow [58].

Focusing optics facilitate the recording of time dependent intensities at exactly definedq.
In the case of wall crystal growth the peak intensity contains a lot of additional information.
This is seen from figure 4, where the reflected and transmitted intensity are recorded for a bcc
crystal like the one shown in figure 9(a). The illuminated spot covers a number of initially
columnar twins (cf figure 9(b)) but intensity is recorded for only one of the six(110) directions.
The initial increase of the peak intensityI (qM, t) is quadratic and linear growth velocities for
very early stages can be extracted. At later times stacking faults interchange the twin species
leading to a deviation from the quadratic increase. This artefact is thus not present if the sum
over all six peak intensities is recorded. Further, fast oscillations are present which result from
thermally excited shear waves in the wall crystals [59]. Knowing the corresponding crystal
thickness, the shear modulus can be obtained. Slow oscillations at medium times originate
from interference effects between front and rear crystals, while irregular late stage fluctuations
stem from straining during the ripening of the twin domains.
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Figure 4. Diffracted and transmitted intensity for a PS109 sample crystallizing in a thick cell.
Intensity was recorded for one of the six(110) reflections only.

Experimentally, a considerable broadening of peaks is often observed. In turbid samples
it may be caused by multiple scattering [48] not considered here. In transparent samples and
in particular for fine grained polycrystalline solids or growing crystals embedded in the melt
also finite size broadening occurs and intensity is present atq 6= ghkl . The order correlation
length now is restricted to the crystal size. For quantitative calculation the real space particle
distributionρ(r) is multiplied with a function describing the size and shape of the crystal
under consideration. The Fourier transform of this product yields a convolution of the Fourier
transforms of particle distribution and shape function. Since the convolution applies to the
delta functions only we write for the resulting structure factor:

SC(q) = S0
C(q)⊗HC(q) (9)

whereq 6= 0. The zeroq peak again shows broadening due to the finite size of the sample and
becomes important if a single crystallite fillsVS . A nice two dimensional illustration of this
case can be found in the book by Born and Wolf [56].

The next step is to find adequate expressions for the shape function and the crystal shape
factorHC(q). We consider a crystal shaped as parallelepiped with axis lengthsLj = Nj |aj |
with j = 1, 2, 3, andNj as the number of lattice planes in the direction of the basis vectoraj .
We further assume an orthogonal unit cell, where theaj are parallel to thebj . Then a set of
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Heaviside functions may be chosen forH(r). The corresponding shape factor is:

HC(q) = sin2(πq1L1)

πq2
1a

2
1

sin2(πq2L2)

πq2
2a

2
2

sin2(πq3L3)

πq2
3a

2
3

. (10)

For each direction, at the peak(q = qm = ghkl) the intensity will be proportional to the square
of the number of lattice planesN2

j while in the tails the intensity oscillates and decreases as

q−2
j . The integrated intensity along each direction will be proportional toNj/aj , and the full

width at half height proportional to 1/Njaj . Thus parallel to a direction where the crystal is
thin the distribution of scattered intensity is broad: a platelike crystal, for instance, will give
rise to a rodlike structure of the peaks, andvice versa[35, 56].

If more than one crystal (phase) is present their scattering patterns superimpose
incoherently. The resulting total structure factorS(q) is:

S(q) = NF

N
SF (q) +

∑
i

NC,i

N
SC,i(q). (11)

NC,i andNF are the number of particles in each crystallitei and in the fluid phase, respectively.
Note that still a homogeneous density is assumed throughout the whole sample.

These considerations have been used in numerous experiments. Strongly anisotropic
HC(q) are, for instance, useful in analysing the stacking probability of hexagonal(111) lattice
planes in HS crystals and its temporal development. While a stacking sequence of ABAB
corresponds to a hexagonal close packed (hcp) structure and ABCABC to an fcc crystal,
random stacking may occur during rapid growth. If growth is slower still stacking faults may
be present leading to a pancake-like stacking of thin slices e.g. of fcc crystal. Both lead to
Bragg rods rather than Bragg spots in reciprocal space. As in atomic systems the width of these
may be determined, if a single crystal specimen is rotated about specific axes perpendicular
to the incoming beam. Otherwise orientational averaging has to be performed leading to a
characteristic anisotropic broadening of the(111) peak [10, 60]. Thick slices are observable
also in polarization microscopy [61] and also occur in oriented monolithic crystals. Dux and
Versmold measured their annealing kinetics through a careful analysis of the time dependence
of peak widths and found an exponential decay of the number of stacking faults [62]. In time
averaged neutron scattering data of samples under shear information about the sliding of stacks
and single planes is obtained [63, 64].

During early stages of growth structurally homogeneous spherical crystallites of radius
R prevail. After solidification facets appear along the contact lines of crystals. The resulting
mosaic is still conveniently represented by a set of spherical (or cubic) crystals of average
radius (side lengths). Their scattering patterns superimpose. To calculate the scattering
pattern for large numbers of randomly orientated crystals an orientation average has to be
performed. In particular, for a powder of spherical crystallitesHC(q) can be derived from the
Rayleigh–Debye–Gans approximation and the intensityI (q−qm)can be calculated performing
a double integration overq to yield [65]:

I (q − qm) ∝ 1

2R4(q − qm)4 (1− cos(2(q − qm)R)− 2(q − qm)R sin(2(q − qm)R)

+2(q − qm)2R2). (12)

Usual Debye–Scherrer experiments have a fixed detector and a rotating sample (cf figure 1(a)).
Our apparatus for simultaneous detection of Bragg and small angle powder scattering is shown
in figure 6(a). There, to avoid mechanical disturbances, the sample is fixed and the Bragg
detector which is an array of photodiodes mounted on an arm is rotated around the optical
axis. Thus either the full two dimensional scattering pattern [66], or after angular averaging
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the usual Debye–Scherrer pattern, is recorded [57]. From the sequence of Bragg peaks the
crystal structure can be inferred. A similar construction is used for the small angle regime
where a ring pattern is observed to grow in time. An example of the BS pattern observed for
a bcc CS solid (seventh peak present) is given in figure 5 [67]. An example of time resolved
BS and SALS measurements during solidification of a HS system is given in figures 6(b) and
(c), respectively.

Figure 5. Debye–Scherrer pattern for PS91 atn = 3.4× 1018 m−3.

SC(q) is obtained from the raw BS pattern after dividing out the particle form factorP(q)

(either calculated or measured on a dilute sample) and subtracting the fluid structure factor
(as known from an early measurement). Figure 7 gives an example for this procedure taken
from Harland and van Megen [68] for the(111) reflection. If the form factor is not known,
one may divide by an early measurement only [66], thus correcting forP(q) but introducing
an ill defined background variation in the region of the oscillations inSF (q). Then only
those peaks inSC(q) are accessible for further evaluation which show a sufficiently small
background variation to allow for a simple subtraction procedure. For the measurements
shown in figure 6(b) this will be possible for(220) and(311).

From the knowledge ofSC(q), the full width at half height1q1/2(t) and the position of
the maximaqM(t) the following kinetic quantities are obtained [68]. Firstly the fraction of
crystalline phaseX(t) is obtained as an integral over the reflection (hkl):

X(t) = cIhkl = c
∫ q2

q1
SC(q) dq (13)

where for8 > 8M the normalization constantc is chosen such thatX(t →∞) = 1. Typical
q1, q2 are indicated in figure 7.

Secondly, the average linear dimensionL is accessible through:

L(t) = πK/1q1/2(t) a (14)

whereK is the Scherrer constant for a cube shaped crystal. For the(111) reflectionK = 1.155
[69]. For spherical crystallitesR(t) is determined from a fit of equation (12). Finally, the
number densitynC of average sized crystals may be inferred from:

nC(t) = X(t)/L3(t) (15)

and the nucleation rate density asJ = (dnC/dt)/VS . Several authors approximated the
time dependencies of the crystallized volume by power laws:VC ∝ tα. For constantJ ,
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(a)

(b)

(c)

Figure 6. (a) Apparatus for simultaneous recording of BS and SALS; (b) time resolved BS
experiment; (c) time resolved SALS experiment; PMMA890,8 = 0.538. Data are plotted
versus the scattering angle2. For our wavelength ofλ = 632.8 nm the correspondingq-range is
(6–15) µm−1.
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Figure 7. Extraction of crystal static structure factorsSC(q, t) from raw intensitiesI (q, t). Upper
row: PMMA402 8 = 0.537; lower row: PMMA402,8 = 0.557. Left: I (q, t); middle:
I (q, t)/P (q); right: SC(q, t) = S(q, t) − SF (q, t). Curves are shifted for clarity. With kind
permission from [68].
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αNUCL = 1, for reaction limited growthαGROWTH = 3 and for diffusion limited growth
αGROWTH = 2/3. In a simplified modelα = αNUCL + αGROWTH are compiled in table 1.
While the individual crystallite continues growing with constantαGROWTH the average also
contains freshly nucleated crystals. More sophisticated approaches therefore account for the
reduced average growth exponent caused by continued nucleation as well as the reduction of
free volume available for nucleation during solidification (see e.g. the paper of Aastuenet al
in [7]).

Table 1. Expected exponents for the temporal evolution of integrated intensitiesI , peak positions
q and peak widths1q during crystallization.

Growth exponent Growth reaction limited Growth diffusion limited
tα R ∝ t1 R ∝ t1/2

IBS 4 5/2
1q1/2,BS −1 −1/2
ISALS 7 4
qm,SALS −1 −1/2

Thus far we have considered samples with no density difference between melt and crystal.
This assumption is not strictly fulfilled in experimental situations. In the coexistence region of
the phase diagram the equilibrium phases differ by some 10% in density. Also above melting
crystals may be transiently compressed as has been shown by following the temporal evolution
of lattice spacingsdhkl(t) = 2π/qm(t) [68]. Further particles may be attached faster to the
crystal surface than they are transported to the interface from the melt bulk. This results in the
formation of depletion zones around the crystallite. In each case additional scattering at low
q arises from such long range (as compared to particle spacings) density fluctuations. Note
that this does not affect the broadening of Bragg peaks as long as the crystal phase remains
homogeneous. For large depletion zones, however,SF (q) may be affected.

To be specific SALS ring patterns arise either from the long range variation in mean
refractive indices stemming from the particle number density variation of crystal plus depletion
zone or from a short range ordered array (rather mono-disperse) crystals. The mean refractive
index of a crystal isνC = 8CνP + (1 − 8C)νS , where the subscriptsP and S denote
particle and solvent, respectively. The mean refractive index of the meltνF is calculated
accordingly. A zeroq scattering amplitude is defined analogous to the single particle case:
b∗(0) = VC(νC − νF ), whereVC is the volume of a crystallite. The crystal form factor is
given byP ∗(q) = b∗(q)2/b∗(0)2. Assuming a spherical shape with sharp boundaries an
analogue of equation (6) may be used forb∗(q)2. The initial distribution of crystallites is
random; inter-crystallite ordering may evolve at late stages, e.g. due to crystals competing for
particles and may be described using an inter-crystallite structure factorS∗(q). Assuming the
typical dimensions of crystalline and fluid regions to be large as compared todNN but small
as compared toV 1/3

S and the isothermal compressibility to be very low, the contributions of
SF (q) andSC(q) atq > 0 may be neglected. The time dependent SALS intensity then is:

I (q, t) = CP ∗(q, t)S∗(q, t). (16)

Averages over many crystallites again result inI (q). They contain a large amount of
information and often are not easy to interpret.P ∗(q) may appear broadened by the size
distribution resulting from continued nucleation. Further, model assumptions about the density
profile as a function of time are required, which may have a rather complex form. At later stages
inter-crystallite ordering may destroy spherical symmetry and lead to deviations ofS∗(q) from
one.
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Time resolved SALS experiments on crystallizing HSs show a pronounced ringlike
scattering pattern [70] well known from spinodal decomposition but also from crystallization
experiments on atomic melts [36]. Rather than usingI (0), hereI (q) is normalized byI (qm).
Furukawa [71] suggested a simple model function for cases where fluctuations in the conserved
order parameter particle density give rise to a peak atqm in SALS:

I (q, t)

I (qm, t)
= 3Q(t)2

2 +Q(t)6
(17a)

withQ = q/qm. The scaling corresponds to a constant shape of the growing object. This may
also apply to HS crystal growth and Schätzel and Ackerson [70] therefore suggested to check
SALS data for scaling laws using the following empirical formula:

I (q, t)

I (qm, t)
= 27Q(t)2

(2 +Q(t)2)3
(17b)

whereI (q)/I (qm) actually corresponds to the shape of the total object but in the literature
often is referred to as the crystal form factor. The position of the maximum is inversely
proportional to the radius of the scattering object,qm ∝ 1/R, and the peak intensity is
proportional to the square of the object volume,I (qm) ∝ V2 ∝ R6. While in near critical
spinodal decomposition experiments, where there is the same length scale for both depleted
and enriched phase, Furukawa scaling is nearly always observed, in HS crystallization only
punctuated scaling obtains [72]. This is caused by the change of the relative size of the
depletion zone as compared to the crystal, which in turn is mainly due to the beginning overlap
of depletion zones at intermediate stages. It also originates from the competition of individual
crystallites for particles. In short, a complex dependency of the growth velocity results which
is observed as long lived transients for the growth exponents, say of the overall scattered
intensity orqm [73, 74]. Generally a slower than expected initial growth is observed, but also
a maximum of growth velocities may occur. The form of the small angle peak is much less
affected [75].

We focus on an evaluation for growth velocities and nucleation rates. For the broad
peaks observed at early stages the evaluation ofq1/2(t), the scattering vector at which
I (q, t)I (qm, t) = 1/2, yields a more stable size estimate thanqm. We use an empirical four
parameter fitting function additionally accounting for a finite sized depletion zone through a
variable width parameterC and the largeq decay with an exponent−δ, which may show
deviations from the expected value of 4 as the depletion zones start overlapping. Details are
given elsewhere [65, 76]. To obtain absolute crystallite sizes the fitting formula is set equal to
the form factor of a solid sphere forq > qm and solved for the crystal radius to yield [65, 76]:

R(t) = 1.8148

q1/2(t)
. (18)

Figure 8 compares the absolute values forR(t) from BS and SALS to show quite a good
agreement in the growth law. SALS radii are somewhat larger, though. Note in both
experiments crystals appear to be some 5µm attI = 15 min.

3.2. Microscopy and combination methods

Light microscopy is a very versatile tool [12], as for sufficiently large particles it may directly
reveal the spatial ordering [77] in the sample but on the other hand at lesser magnification
shows the sample morphology [78]. In principle all conventional techniques may be employed
like interference and phase contrast [79], confocal illumination [80] or polarization microscopy
[61]. Interestingly, for sufficiently small numbers of individual crystallites in the light path, also



R338 T Palberg

(a)

(b)

Figure 8. (a) Comparison of crystallite radii as a function of time from SALS (4) and BS (�).
PMMA890,8 = 0.535. (b) Comparison of crystallite radii (◦) to wall crystal thickness (�) for
PS109∗.

crystals of cubic structure give rise to coloured patterns if observed between crossed polarizers.
This is not due to optical anisotropy but rather depends on the change in polarization of the
scattered light and is described by dynamic diffraction theory [81]. This can be employed
to study the stacking fault structure of fcc crystals [82], new growth instabilities [61] or the
reduction of nucleation rates under shear [49].

A particularly nice technique was employed by some authors which relies on the
combination of scattering and microscopy which henceforth will be called Bragg microscopy
(BM). In their pioneering study on nucleation and growth, Aastuenet al observed the sample
by a video camera equipped with a macro-lens [83]. Occasionally a crystallite was orientated
such that its Bragg reflection was directly collected by the camera. Since the objective covered
a finiteq-range of1q > 2π/L, the image of the crystal is reconstructed from the diffracted
light allowing for an analysis of its growth velocity. Detailed studies on this technique with
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Figure 9. Bragg micrographs taken at different times as indicated. (a) Growth inz-direction: the
shown area corresponds to 3.2× 2.4 mm2; the light region is the wall crystal. (b) Development of
bcc twin domains in thex–y-plane.
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abundant examples for unusual and regular morphologies have been given by Okubo [84]. If
the detector is placed off peak crystals appear as dark regions within a moderately scattering
melt. Such crystals have been termed ‘ghosts’ [85]. Two examples of Bragg micrographs
of wall crystals growing against the melt and of the ripening of bcc twin domains are given
in figure 9 [86]. In the latter case contrast between domains is provided by the different
scattering pattern orientation; one twin appears as ghost. For the sample in figure 9(b) the
contrast increases as the crystal thickness in thez-direction increases. Three shades of grey
are observed as scattering regions are situated both on the top and bottom sides of the cell.

Figure 10. (a) Set-up for laser Bragg microscopy. C: wall crystal; F: fluid. (b) Bragg micrographs
taken on growing crystals after layering induced heterogeneous nucleation at the cell wall. Time
progresses from top to bottom,t = 0 is defined by abortion of shear flow. Bright: melt phase;
grey: crystal phase.

To avoid multiple pictures when illuminating with white light coloured filters may be used,
otherwise illumination can be done with a laser beam. To avoid the appearance of too many
crystals on the video frame a slit or ultramicroscopic illumination should be used. This has
for instance been employed in our studies on the structure of flowing systems [87] and on the
growth velocity of wall nucleated crystals. A CCD camera observes the image of the laser
beam crossing the cell at an angle to the optical axes (figure 10(a)) [88]. If the camera is
placed in a direction whereSF (q)� SC(q) the bright zone in the middle of the video frames
represents the remaining melt, while the comparably dark zones are the two growing crystals
(figure 10(b)). As the cell depth is fixed, large angles of incidence may be chosen to enhance
the spatial resolution. Image processing then gives the crystal thicknessesL as a function of
time as is shown in figure 8(b) comparing the case of homogeneously nucleated ghosts and
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the case of wall nucleated crystals. Both spatial and temporal resolution of this technique are
less good than for scattering; growth velocities obtained from fits to recorded crystal thickness
are, however, accurate in the 10−2 µm s−1 range.

4. Solidification of hard sphere suspensions

4.1. Preparation and expected phase behaviour

Considerable progress was reported on HS suspensions, both due to the further
development of scattering techniques and the availability of new, well characterized model
systems. Several experimental realizations of HS systems have been reported: PMMA
(polymethylmethacrylate) spheres coated with stabilizing PHSA (polyhydroxystearic acid)
[25, 89], PS (polystyrene) [90] or PMMA [85] micro-network particles. Interesting new
developments comprise core–shell particles or thermosensitive gels showing a temperature
dependent packing fraction at constant particle density [91]. Often a near perfect index match
is obtained using organic suspending liquids. Experimental systems closely follow theoretical
predictions for HS also concerning dynamic quantities like diffusion and viscosity.

For HSs the only relevant parameter is the packing fraction8. It is calibrated against
the phase behaviour most conveniently by the sedimentation method of Paulinet al [92].
The phase behaviour of monodisperse samples [24, 25] follows the theoretical predictions
[21] based on the semi-empirical Carnahan–Starling equation of state [93] for the melt and
results from computer simulations for the crystalline phase [94]: independent of particle size
freezing occurs at8F = 0.495 and melting at8M = 0.545; for comparison: random close
packing is at8 = 0.64 and the maximum value for one component systems is8 = 0.74
achieved for fcc and hcp. A kinetic glass transition is reported to occur under normal gravity
at8G = 0.57 close to loose random packing [25]. Recent theoretical work further indicates
that polydispersity will broaden the coexistence regime and shift it towards larger8 values
[95]. It is not clear, yet, whether this will be accompanied by a size segregation [96]. In
any case crystallization should be suppressed above a critical polydispersity which has been
estimated to be of the order of some ten per cent. Simulations show an HS crystal to wet
a smooth hard wall with its(111) lattice plane enabling homo-epitaxial growth of partially
oriented crystals [97]. This may not apply to restricted geometries where a number of quite
exotic packings have been observed [12, 98]. Free energy differences between fcc and hcp
structures as derived from theory and simulation are very small [99]. While absolute values are
in fact still under discussion recent computer simulations favour fcc [100, 101]. In experiments
these small differences of energies, respectively entropies, result in the occurrence of stacking
faults [10, 61]. In annealing experiments on strongly screened CSs [62] and our own studies
on PMMA particles a clear preference for fcc is observed.

4.2. Morphologies

Despite the principal simplicity of the problem there is a surprising richness in possible growth
scenarios. Most crystal surfaces observed in purely repulsive systems were rough, leading to
roundish morphologies during growth. In the coexistence regime of CSs dendritic instabilities
may evolve, or growth may proceed from isolated islands forming hemispherical caps of
crystallites [61, 82]. Dendritic growth also is observed for homogeneously nucleated HS
crystals with surrounding depletion zone under various conditions [85] and has been treated
in terms of linear stability analysis. In fact, there are indications that irrespective of volume
fraction this is a normal growth mode under conditions ofµ-gravity [74], where the dendrites
are not sheared off the growing crystallite. It is not present in fluidized beds [9] or time
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averaged zero gravity [102].
The conceptually most appealing situation of heterogeneous, layering induced nucleation

with plane crystal–melt interfaces is difficult to prepare and has as yet not been studied
systematically. Columnar growth, however, is observed for settling suspensions [103] with
(111) parallel to the sample cell bottom. At low settling rate nearly defect free single crystals
may be grown on corrugated substrates [12, 104] of hexagonal and other symmetry. In a recent
work [105] it was shown that in the complex interplay of density dependent settling rates with
crystal compression and phase transition thermodynamics in addition to a plane interface with
no depletion zones several shock fronts may evolve and their height in time can be described
by a modified Kynch theory. For the freezing transition also there the WF-growth law may
apply, albeit with strongly restrictive boundary conditions leading to a supply limited growth
velocity under conditions of high settling rates.

Crystallization also may occur from amorphous solid phases. While no quantitative
growth studies have been reported, it became clear that an expanding sediment formed by
previous centrifugation will lead to homogeneously nucleated columns [106]. PMMA HS
glasses show heterogeneous nucleation and growth from the sample top, while homogeneous
bulk nucleation seems to be suppressed above8 = 0.57 [25]. Residues of the shear melting
process, however, seem to provide possible heterogeneous nuclei and large oriented crystalline
features are observed also in the bulk way above the glass transition [107].

4.3. Crystallization via homogeneous nucleation

This standard situation has received considerable interest. Smitset al investigated nearly hard
spheres (coated Si in toluene/ethanol carrying some 260 charges/particle). There a maximum in
the growth coefficient was reported at medium volume fractions [108]. For the pure HS case the
growth law (cf table 1) was checked in SALS and BS experiments [70, 72, 109–111]. Assuming
a finite induction time seems to work better than assuming a constant growth exponent. Well
above melting the limiting exponents for WF growth are observed, while at lower packing
fraction long lived transients with varying growth exponents are found which approximate
diffusion limited growth for long times after nucleation. The appearance of these transient
behaviour has successfully been modelled numerically [73–75], but, as shall be outlined below,
it leaves data evaluation with a difficult task.

Very recently we tried to measure absolute growth velocities in an HS system using
the apparatus sketched in figure 6(a) [66, 76]. We used PMMA/PHSA spheres of core size
a = 435 nm and a coating of 10 nm thickness [112] in mixtures of decalin/tetralin. The
polydispersity isσ = 0.025. These samples are a kind gift of W van Megen and S Underwood.
We had access to five different Bragg peaks indexed(111), (200), (220), (311) and(222), as
can be seen from figure 6. Interestingly,(200) is very pronounced, indicating a comparably
low degree of random stacking and a clear preference for the fcc structure.

As explained above and in more detail in [66] and [76] application of the usual procedures
to infer SC(q) from the raw data (cf figure 7 and [68]) was not applicable here. In short,
the particles show a slight swelling with tetraline leading to an inhomogeneous profile of the
refractive index. Their form factor therefore is very sensitive to small changes in solvent
composition [112] and thus cannot be directly taken from experiments on diluted systems for
the interpretation of growth experiments. We therefore adapted a different extraction procedure
and divided the time dependent raw data by an early measurement, thus dividing out both the
actual form factor and correcting for different sensitivity of the diodes. This however leads
to severe distortions ofSC(q) in those regions whereSF (q) shows its pronounced oscillations
and therefore excludes(111) and(200) from further evaluation. As further(222) is very weak,



Crystallization kinetics of repulsive colloidal spheres R343

only (220) and(311)were investigated in detail. As can be seen in figure 6(b), in their vicinity
SF (q) only contributes a flat background, which can conveniently be subtracted before further
integration.

Figure 11. Time-dependent integrated peak intensities of(311) (top) and(220) (bottom) for
PMMA890 at different packing fractions as indicated.

Integrated peak intensitiesIhkl are given in figure 11 for different volume fractions. A
qualitative different behaviour in the time dependence is immediately visible. While(220)
data all show constant growth exponents (which are between 2.5 and 4 at low8), a second
and lower growth exponent is observed for early times in the low volume fraction(311) data.
A similar effect has been reported by Harland and van Megan [68] on the(111) reflection.
There, however the effect was observed for high8 data only and increased with increasing8.
It was interpreted as a hindering of normal growth due to decaying shear residues which are
most common in the highly viscous melts close to the glass transition. Only when these are
dissolved may normal nucleation and growth commence to a significant amount. Note that
a slight increase inα is also visible in our data on(220) for our largest packing fraction
8 = 0.57.

We interpreted our low8 data within an alternative approach, assuming shear residues
to very quickly decay close to the phase boundary where diffusion is not yet strongly
hindered. Resorting to the two dimensional scattering pattern we noticed the presence of
sixfold symmetric intensity maxima in(311) and also(111) absent in(200) and(220). In
a straightforward but nevertheless tricky crystallographic analysis these could be shown to
result from wall nucleated crystals with a shear induced lateral orientation [66]. They do not
actually hinder homogeneous nucleation but contribute to the integrated scattered intensity
already during the induction time. The growth exponent forI311 of the sixfold symmetric
pattern alone is close to one, which for diffusion limited growth in one dimension is the
expected value for the maximum intensity atqm, rather than for the integrated intensity which
was measured here. Recalling the difficulties encountered in charged systems we refrain from
further interpretation.
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With increasing8 this solidification mechanism loses importance. We note that, if
induction times go through a minimum around melting [68], it may gain importance again
as8g is approached and an alternative interpretation of van Megen’s data indeed may be an
early low dimensional growth from bulk shear residues (stacks of(111) planes) of various
orientations serving as nuclei. Their intensity contribution will become negligible, once the
competing bulk homogeneous nucleation starts. Further experiments should clarify this issue.

Figure 12. Crystal packing fractions8C of PMMA890 att ≈ ti (�) and at large timest = 1000 min
(4). The solid line indicates the theoretical expectations for8C at t →∞.

For evaluation of growth after homogeneous nucleation therefore in our system only(220)
and the small angle data (cf figure 6(c)) are left. In each of the data sets the intensity rises
strongly after some induction timeti . After complete solidification(∼30 min for8 = 0.545)
intensity changes are much weaker, nevertheless indicating further ripening. Throughout
solidification we observe a continuous shift in the position of the BS maxima. Figure 12
compares the derived crystal packing fractions at the first appearance of Bragg peaks to
those observed in the limit of very long times. We conclude the crystals to nucleate in a
compressed state and to slowly expand. Solidification becomes generally faster with increasing
concentration across the coexistence regime but slows down again above melting. Except
for samples with8 slightly above8m, also in our experiments strong temporal variations in
velocity and growth exponent are observed. The interpretation of the complete time dependent
kinetics thus becomes very difficult and is restricted to early times.

Crystal sizes were determined from peak widths as described above. For short times
the size evolved roughly linearly for both SALS and BS data (cf figure 8(a)). We thus
could derive an apparent short time velocity. Figure 13(a) shows the results. For sublinear
growth (as expected below melting for diffusion limited growth and way above melting for
the above mentioned transient behaviour) this procedure underestimates the true initial growth
velocity. Figure 13(b) compares the logarithm of these apparent velocities to a WF law using
v = KDeff (8)/dNN [1− exp(−1µ(8)/kBT )] wheredNN is the mean particle distance and
Deff and1µ are taken from experiment [25] and theory [93, 94], respectively. As the figure
contains data taken from both experiments it again demonstrates consistency of results (see
also [110]). In this approach the theoretical growth velocity shows a maximum at about
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8 ≈ 0.515. The experimental data show a maximum around8 ≈ 0.535 and lie above the
theoretical prediction forv. Most of our data can be fitted withK = 40. This leads to an
upward shift of the curve while the functional form is retained. Roughly speaking, each particle
attaching to the crystal has to move over a distance on the order of 1/40 of the interparticle
distance, which is on the order of the distance between particle surfaces.

(a)

(b)

Figure 13. (a) Apparent growth velocitiesv for PMMA890; (b) the same plotted in a semi-
logarithmic way to compare to WF predictions.

The predicted functional form is met between melting and the glass transition, while
deviations toward significantly lower values are observed below melting and a much too large
value for the sample at8 = 0.57. The former may be expected, as below melting in HS systems
two kinetic processes are responsible for the growth velocity, namely the self-diffusion of a
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particle towards its target place in the crystal and the preceding transport towards the interface
which may be much slower or over longer distances and in fact limitv. The latter may be
expected from the results of exhaustive computer simulations of fcc/melt interfaces [34], where
even forT ∗ = 0 growth was facilitated through the release of latent heat and local density
variations provided by the density difference between crystal and melt. Since here experiments
are performed at room temperature particles will move once local decrease in density allows
for further motion. A further interpretation of absolute velocities is feasible only in comparison
to the soft sphere data and shall be pursued below. For the moment we state that our data are
not inconsistent with a WF-growth law, where it is actually expected.

Figure 14. Number densityN(t) of crystallites in the scattering volume. PMMA890,8 = 0.545.

Figure 15. Induction timesti for PMMA890 ( ) and PMMA402 (◦) [68].
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Knowing the crystallite radii, the number of average sized crystalsN(t) in the scattering
volume may be determined from the integrated intensity. Figure 14 shows this value for the
sample at8 = 0.545. No crystallites are observed up a certain timeti , the induction time,
then for practically all samplesN increases linearly. Figure 15 compares results onti to the
data of Harland taken on particles of about half the size (PMMA402). Induction times are
very similar for both systems; however the pronounced minimum present in Harland’s data is
not observed in our case. The reason for this discrepancy is not yet understood. We note that
above8 ≈ 0.55 Harland’s data follow the inverse of the long time diffusion coefficient.

Figure 16. Comparison of nucleation rate densitiesJ of PMMA890 to PMMA402 (from [68]).
Symbols as in figure 15. Dashed lines are theoretical fits to the data for PMMA890 and PMMA402.
The inset shows the dimensionless nucleation rate densitiesJ ∗ plotted logarithmically versus
1/(81µ)2.

From dN(t)/dt and the scattering volumeVS = 0.25× 10−6 m3 the absolute nucleation
rate density is derived and compared in figure 16(a) to theory and Harland’s data. The latter
were calculated from the dimensionless nucleation rates given by the authors. AsD0 is
not known for Harland’s data we calculated it from the Brownian time given in their paper
τB = a2/D0 = 0.047 s to be 8.122× 10−13 m2 s−1. Interestingly both data sets fall upon
each other within one order of magnitude. The most surprising fact is that these samples of
much higher number density and much smaller radius nevertheless show roughly the same
nucleation rate density as our samples. Also shown are theoretical curves forJ = K(nD0(1−
8/0.58)2.58/l2) exp(−1G∗/kBT ) = K(Deff8

5/3/(4π/3)5/3a5) exp(−1G∗/kBT ) with the
typical lengthl given in units of the inter-particle distancedNN = n−1/3. The inset gives the
same curves in dimensionless unitsJ ∗ = J/J0 = J/(Deff8

5/3/(4π/3)5/3a5) plotted versus
1/(1µn)2. Then the ordinate gives ln(K) and the surface tensionγ can be inferred from the
slope d ln(J )/d(81µ)2 = 4π3γ 3/27.
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Two independent fit parameters enter: the choice of the dimensionless surface tension
γ ∗ = 4γ a2/kBT very sensitively determines the functional form viaG∗, while the variation
in l only shifts the curves. Except for the points at lowest volume fraction the theoretical curve
can be well fitted to the experimental data of PMMA890. Deviations at low8 possibly result
from impurity nucleation. As can in particular be seen from the insert the fit for PMMA402
is less good and the data seem to become independent of metastability at large8. The best
fits areγ ∗ = 0.50± 0.01 for PMMA890 andγ ∗ = 0.54± 0.03 for PMMA402. Both are
compatible with each other and with the recent analysis of Marr [113], considerably larger
than recent results from density functional theory [38] and somewhat smaller than older results
of Marr and Gast.

The second fit parametersK402= 0.0034±0.0015 andK890= 0.126±0.013 indicates that
nucleation is significantly slower than estimated by this simple theory. Further, the nucleation
rate is grossly different for the two samples. If deviations ofK from one are expressed in
distances from the target place, PMMA890 particles have to diffuse 2.8dNN , while PMMA402
particles need some 17dNN for 8 > 8m and even more in the coexistence regime. As
PMMA890 has a polydispersity ofσ = 0.025 and PMMA402 ofσ = 0.05, it is tempting
to ascribe the difference to the larger polydispersity. The physical picture behind this could
be the following. Polydispersity will enhance the energy barrier, as the latent heat will be
lower for a less well ordered nucleus, and thus significantly reduce the number of critical
nuclei composed of differently sized particles. Assuming nucleation being possible only for
sufficiently monodisperse fractions or local environs, 17dNN would correspond to the mean
distance of suitable particles from a possible nucleation site.

5. Solidification in charged sphere suspensions

5.1. Preparation and conditioning

Also here important experiments have been reported mainly through the use of novel
preparation techniques and advanced microscopic methods. Charged particles are
available commercially or synthesized after different recipes with a wide variety of sizes,
polydispersities, different surface groups and charge densities. Different methods of particle
sizing are indicated [114, 115]. Main features of systems reviewed here are compiled in table 2.

Practically all of the suspension properties can be described well using a Debye–Hückel
type potential. Charge numbers used therein, however are often considerably smaller than
the number of titrated surface groups. It thus became customary to discuss the interaction in
terms of an effective charge and to attribute the observed deviations to incomplete dissociation,
counter-ion condensation of the Manning type [26, 117, 118] and other mechanisms. Effective
chargesZ∗i can be determined from a number of techniques. We here derived them from the BS
calibratedn-dependency of the conductivity of deionized samples known to be independent
of the system structure [48] via:

σ = enZ∗σ (µ+
H +µ−P ) + σB (19)

whereσB ≈ 60 nS cm−1 is the background conductivity of water ande is the elementary
charge. Proton mobilitiesµ−H = 36.5×10−8 m2 V−1 s−1 are taken from literature and particle
mobilitiesµ−P = (2–20)× 10−8 m2 V−1 s−1 are measured independently [119].

Effective charges may also be calculated in a two step procedure using a program kindly
provided by Luc Belloni [120]. First the non-linearized Poisson–Boltzmann equation is solved
numerically in a spherical Wigner–Seitz cell under charge regulation boundary conditions. In
dependency on the particle size, number of titrated groupsN , surface pK, particle number
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Table 2. Particle properties of the samples investigated.d: nominal diameter given by
manufacturer;a: geometrical radius;σ : polydispersity; determination via: transmission electron
microscopy (TEM), dynamic light scattering (DLS), static light scattering with contrast variation
(SLS/CV), forced Rayleigh scattering (FRS); data for PMMA402 are taken from [68];N : titrated
number of surface groups;Z∗(σ ), effective charges as derived from conductivity via equation (19).

Batch No d (nm) a (nm) σ N Z∗(σ )

PS120 IDC 120 Turbidity DLS 3.6× 103 685
10-202-66 59 0.038 Sulphate

PS109 Seradyn 109 Turbidity FRS 950 395
2011 M9R 51 0.015 Sulphate

PS109∗ Seradyn 109 Turbidity FRS 1200 450
2010M9R 51 0.015 Sulphate

PS91 Serva 91 TEM DLS [116] 5.9× 103 800
41907 35 0.01 Sulphate

PMMA890 — SLS/CV SLS/CV PMMA/ —
(SMU28) 445 0.025 PHSA
PMMA402 — SLS DLS PMMA/ —

201 0.05 PHSA

density, and concentrationc of added 1:1 electrolyte, the electrostatic potential9(r) is
calculated. Then, following the suggestions of Alexanderet al [117] a Debye–Ḧuckel type
potential

9∗DH (r) =
Z∗DHe
4πε

(
exp(κa)

1 +κa

)
exp(−κr)

r
(20)

is fitted to the full solution at the Wigner–Seitz cell boundary with the Debye screening
parameter:

κ = e2

εkBT

√
nZ∗DH l2 + nSl2 (21)

andZ∗DH as free parameter. Hereε = ε0εr is the dielectric permittivity of water andnS is
the number density of salt ions. Except for extremely high surface charge densities results of
this mean field treatment (also termed charge renormalization) compare favourably to those
obtained from more sophisticated approaches. We note that while other experiments may yield
significantly different values forZ∗i [48, 117, 121, 122],Z∗σ usually agrees well withZ∗DH and
for PS120Z∗DH = 730.

Particle number densities are obtained from scattering data on crystalline samples (cf fig-
ure 5) or from conductivity, where no scattering data are available. The salt concentration
is adjusted by ultra-filtration, dialysis or addition of known quantities of salt after thorough
deionization. In particular in the latter case care has to be taken to avoid contamination with
dissolving CO2 and to exclude the ion exchange resin from the actual measuring cell to avoid
particle transport due to diffusiophoresis. Such preparation artefacts may alter the phase be-
haviour [123]. Cycling the suspension peristaltically through a closed tubing system which
connects different components (ion exchange chamber, conductivity measurement, structure
measurement etc) has proven suitable to guarantee gradient free, homogeneous shear melts and
reproducible adjustment of control parameters within short times. This technique is also em-
ployed here. Details of this procedure are given elsewhere [68, 121]. We just note that residual
uncertainties inn, c andZ∗σ are less than 2%, if the temperature is controlled to some 0.1 ◦C.
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(a)

(b)

Figure 17. Coexistence regions in the phase diagrams of (a) PS109 (◦) and PS109∗ ( ); (b) PS120:
bcc/fcc ( ); bcc/fluid (◦).

5.2. Phase behaviour and morphology

Matching the refractive indices to that of water or ethanol is difficult asνPS = 1.559 and
νSI = 1.463. Only for PTFE (νPT FE = 1.3560) is this possible with the fine tuning
performed by adding small amounts of urea [124]. Therefore highly concentrated samples
appear turbid and x-ray crystallography is employed to study the full range of then–c-phase
diagram [125]. At sufficiently lowc, however also lown samples show fluid, bcc and fcc order
[126–128] in near quantitative agreement with computer simulations [26, 129] and perturbation
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theoretical treatments [130]. Also amorphous phases were reported [131, 132] and predicted
[133]. In two component systems the formation of glasses, alloys and crystals [134] sometimes
with interstitially mobile small components were observed [135]. We just note that in addition
some experiments seem to indicate the possibility of phase segregation phenomena [136] or
the formation of metastable crystals from very low concentration samples [137]. The origin
of this, however is still discussed controversially [138].

For the particle discussed here in more detail figure 17(a) and (b) give the phase diagrams
[44, 48]. At low density and low salt the suspension is more OCP-like and a bcc structure is
formed while for the more HS-like case with stronger screening an fcc structure is observed.
In figure 17(b) the coexistence range between bcc and fcc is much broader than between
fluid and bcc. It is not known as yet whether this is due to size polydispersity which may
have a stronger influence at larger screening. In fact, it has not been systematically studied
how size and charge polydispersity are related and only a few suggestions exist. For strictly
monodisperse systems with all degrees of freedom of the counter-ions coupling to the particle
position the coexistence regime actually is predicted to vanish [139], an assumption which
probably is not fulfilled for these systems. We note that for charge variable particles at constant
8 the position of the phase boundary in anN/c-diagram becomes nearly independent of the
surface group number for sufficiently largeN . This has been interpreted in terms of a saturation
in the effective chargeZ∗ [128] (also cf [140]).

A particularly nice feature of charged suspensions is the fact that crystals wet a charged
wall, leading to the formation of heterogeneously nucleated crystals oriented with their closest
packed plane parallel to the wall [141]. Studies of crystal formation in narrow slit geometries
show that first a fluid layer is formed which then crystallizes [12, 142]. Thus the nucleation
mechanism was identified to be layering mediated. Under shear hexagonal layers appear
which are further oriented to either have the closest packed direction parallel (large amplitude
shear) or perpendicular (low amplitude oscillatory shear) to the flow direction [143–145].
After cessation of shear, stacking faulted growth of otherwise single crystals results for fcc.
Also bcc can nucleate from shear induced hexagonal layers; the detailed mechanism, however,
remains unresolved. As can be seen in figure 7(b) a typical morphology is a pattern of columnar
twin domains [86]. While in thick cells homogeneous nucleation dominates, wall nucleation
yielding a flat interface may be made dominant by using moderately deep quenches and thin
flat flow through cells.

5.3. Growth

Aastuenet alwere the first to find strong indications of WF growth above melting in experiments
varying n at constantc ≈ 0 using BM on samples with ion exchanger present in the cell.
Similar in spirit to defining a reduced undercoolingT ∗ in atomic melts they approximated
the difference in chemical potential by1µ = B(n − nf )/nf ; f andm denote freezing
and melting, respectively. They found the proportionality constantB ≈ 8 kBT and the
radially averaged limiting velocitȳv∞ = 17µm s−1 [83]. Würth et al [88] used the set-up
sketched in figure 10(a) to study slightly larger particles of two different effective charges under
variation of salt concentrations and densities (conditioning after [67]). Below melting very low
and eventually slowing growth velocitiesv110 were observed while linear growth was found
above melting. In each series the increase in the growth velocity covered some two orders of
magnitude before the saturation value ofv110 = 9.1 µm s−1 was reached (figure 18(a), (b)).
All data should collapse on a single curve if in the approximation used for1µ the pair potential
is properly accounted for. The authors defined an energy density5 = αnV (r), whereα is an
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effective nearest neighbour number and the pair energy of interaction was approximated as:

V (r) = Z∗2e2

4πε

(
exp(κr)

1 +κr

)2 exp(−κr)
r

. (22)

This allowed them to estimate a dimensionless rescaled energy density5∗m = (5−5m)/5m.
In fact, as is shown in figure 19 all data of figure 18 collapse on a single curve, indicating
the validity of the simple rescaling procedure. Further, the data could be well fitted with
equation (1) withB = (6.7 ± 0.7) kBT . Note that in figure 19 data taken at coexistence
have negative5∗m-values. The authors pointed out that their thermodynamically somewhat
inconsistent choice of melting as reference point was motivated by the better fit of equation (1).
However, using

1µ = B5∗f = B
(
5−5f

5f

)
(23)

for the energy gain upon crystallization per particle gives very similar results only the
uncertainty is somewhat worse.

We recently repeated these experiments on the slightly more polydisperse sample PS120.
Microscopy data taken in dependency on8 show a broader scatter due larger contamination
with spurious small ions in the particular cell used. Velocities atn < 2.56µm−3 were too small
to be determined accurately. Further the sample reveals a considerably broadened coexistence
region presumably due to polydispersity. Nevertheless, again a strong increase inv110 close
to the phase boundary and a saturation at a value ofv∞ = 3.9 µm s−1 are clearly observed.
The raw data are shown in figure 20. Fits of equation (1) using5∗f giveB = (5.8± 1.9) kBT
while using5∗m yields aB-value of the order of 10kBT with a considerably larger uncertainty
[86].

To treat all available data on a common footing, we replot our and Aastuen’s data on CSs
in terms of1µ in figure 21, where for each sample theB-values compiled in table 3 are used.
For PS91 B is taken from Aastuenet al. We also show plots ofv = v∞[exp(−B5∗F /kBT )]
with v∞ andB compiled in table 3. Arrows in figure 21 give the melting value of1µ for
PS109 (left) and PS120 (right); freezing, of course, is at1µ = 0.

Concerning the functional form, we notice that close to the phase transition the velocity
for PS120 is significantly smaller than expected after WF. The strong increase is observed
around melting. Note that also Ẅurth’s data show this trend but masked by the narrowness of
the coexistence region in their case of less polydisperse particles. As before in the HS case we
can only suspect a difference in growth mechanism to be responsible for the observed scenario.
Below melting density changes have to occur in addition to structural rearrangements. This
cannot, of course, be understood solely in terms of a single diffusion coefficient. From our
observations we nevertheless find that above melting the WF law is fulfilled in all three soft
sphere samples.

We finally compare the results of figure 13(a) and (b) to those of figure 21. In both HSs
and CSs the region of validity for WF growth was identified to extend from around melting to
large degrees of metastability. It is interesting to recall that a chemical potential difference of
1kBT corresponds to 2.5 kJ mol−1 crystallization free energy. Further, in colloidal systems the
latent heat release varies with the variation of pair potential and density, while the temperature
stays practically constant due to the excellent thermal reservoir of the carrier liquid. Table 3
compiles estimates of the maximum molar free energy differences between melt and solid.
Evidently investigations of CSs cover a considerable range of transition free energies well
comparable to atomic substances.

Nevertheless the growth velocities are orders of magnitude smaller than for atomic melts,
differ significantly for individual systems and, in fact, no clear limiting velocity is observed for
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(a)

(b)

Figure 18. Growth velocities of (a) PS109∗ at c = 0 µmol l−1, (b) PS109 at8 = 0.003 (◦) and
PS109∗ at8 = 0.0022 (�). Stars denote points taken at coexistence.

HS. Thus the interesting open question arises, whether a common description for the kinetic
prefactorv∞ can be derived. From the analysis of dimensions it should be proportional to
a frequency times a length scale. Assuming a flat interface between crystal and adjacent
homogeneous melt the length scale will correspond to the interfacial thicknessdI . The
frequency is derived from the ratio of a diffusion coefficient and the square of a second length
scalel, which for instance may equal the mean distance of a particle just outside the moving
interface from its final target place again just outside the interface, but now on the crystal side.
Since the prediction of absolute prefactors has to rely on the right choice of diffusion constants
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Figure 19. Growth velocities for both PS109 samples plotted versus dimensionless rescaled energy
density5∗m = (5 − 5m)/5m. Symbols as in figure 18. The solid line gives a WF fit with
v∞ = 3.9µm s−1. The fit parameterK is given for two different formulations ofν∗.

Table 3. Compilation of results on available growth data.

B NA1µMAX v∞ v∗ = v∞dNN/Deff v∗ = v∞a/Deff
[kBT ] [kJ mol−1] [µm s−1] K K

PS91 8 35 17 15 1.6
PS109 6.7 40 9.1 12 0.97
PS120 5.8 13 3.9 14 0.55
PMMA890 — 1.2 4.3× 10−3 27 14.5

and length scales as well as on structural details of the interfacial region, we can only illustrate
this important problem, rather than solve it.

A specific question is the choice of the diffusion coefficient. In the case of HSs we
used the long time self-diffusion coefficientDeff measured experimentally to find a good
qualitative agreement between growth data and WF prediction. One may however also argue
for the short time self-diffusion coefficient, since the particle may not have to leave its cage, or
for the collective diffusion coefficient measured at the maximum ofS(q), since we consider
a structural rearrangement of the local cage. If e.g. we chose the simplest approximations
D = D0, l = a and dI = 2a, v∞ should decrease with increasing particle size and be
independent of packing fraction as qualitatively observed in figure 21. In particular for HSs
a more appropriate choice may beD = Deff (8). Further settingl = dI = dNN results in
v∞ ∝ Deff /dNN . To compare HSs to CSs we replot in terms of reduced growth velocities
with v∗ = vdNN/Deff . Thus, in each data series we rescaled the absolute growth velocity by
multiplying with the inter-particle distance and dividing by the effective diffusion coefficient
which allows comparison to a WF law with constant limiting velocityv∞ = 1. For the HS data
we again usedDeff = D0(1−8/0.58)2.58 [25, 68] and for the CS we used the dynamic freezing
criterion of Löwen, Simon and Palberg to estimateDeff = 0.1D0 [146, 147]. The results are
shown in figure 22. Data are compared tov∗ = K(1− exp(−1µ/kBT )) and the results for
the fit parameterK are compiled in table 3. Note that PS120 data do not follow the functional
form of the fit curve over the whole range of parameters, possibly indicating a decrease in
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(a)

(b)

Figure 20. Growth velocities for PS120. (a)v versus particle number densityn; (b) v plotted
semi-logarithmically versus5∗f calculated using equation (23). The solid curve is the best fit of a

WF law yieldingB = (5.8± 1.9) kBT andv∞ = 3.9µm s−1.

Deff .
The most striking feature is the closeness of rescaled velocities for the different systems.

The spread in packing fractions and observed absolute growth velocities in the original data
contained several orders of magnitude. Now limiting velocities are less than a factor of two
apart for CSs and theK-values show no clear correlation with particle radius nor polydispersity.
The HSK is only a little larger, while the HS particle radius is larger by a factor of about eight.
In table 3 we also show the results for an evaluation usingv∗ = va/Deff . There the spread in
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Figure 21. Comparison of CS growth velocities plotted versus1µ. The limiting velocities decrease
with increasing radii. Arrows indicate1µm (right: PS120; left: PS109). Symbols as indicated.

Figure 22. Comparison of CS to HS growth in terms of the dimensionless growth velocityv∗
versus1µ. Fit parameters for WF fits are compiled in table 3. Symbols are as indicated.

limiting velocities for CSs is still present with large spheres having lowerK values.
From these comparisons we conclude that using the inter-particle distance for scaling

seems more appropriate than using the particle radius. Note, however, thatdNN approaches
2a in the HS case. Further, growth in different CS systems is very similar and possibly not
too different from the HS case. The absolute value forK in figure 22 should be 1 if the
interfacial thickness is one monolayer and the particles have to diffuse one particle distance
with Deff . Values of about ten can be explained by a faster diffusion (hereDeff = 0.1D0), a
shorter way to the target place (see [88]) or layering with an increase indI , where computer
simulations indicate values of a fewdNN [6]. We currently cannot discriminate between these
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alternatives. Direct microscopic studies should prove very helpful to clarify this issue which
certainly deserves further experimental attention.

6. Conclusion

We have presented measurements of the basic processes of nucleation and growth of
colloidal crystals from their melts. A variety of sophisticated experimental methods was
demonstrated to give valuable information on both problems through the combination of direct
observation in real space and the analysis of scattering patterns. The connection between
experimental parameters like packing fraction or for CS density, charge and salt concentration
to thermodynamic properties was successfully achieved through computer simulations, theory
or semi-empirical calibration methods. A general qualitative agreement between classical
concepts of nucleation and growth with our and other authors’ measurements on purely
repulsive systems was observed. In growth appropriate scaling allowed for the comparison of
hard and soft sphere data. A full quantitative understanding of the kinetic prefactors and of
the kinetic laws in the coexistence region still has to be developed. Here the knowledge of
detailed mechanisms is of great importance to identify the relevant diffusion coefficients and
length scales.

Up to now the basic features of classical solidification theories were confirmed for purely
repulsive systems. Important developments are awaited for ripening, for nucleation and growth
far from mechanical equilibrium or in thin films, for the competition between crystallization
and glass formation or phase separation and for solidification in mixed systems where at small
differences in radii alloy formation and at large differences phase separation will prevail. In any
of these cases colloids will provide suitable model systems, but theoretical calculations and
simulations can support the understanding of the solidification kinetics to an extent rarely
encountered with other condensed matter problems. This finally aims back at a refined
understanding of manufacturing processes for example in diffraction optical and acoustic
devices, optical band gap materials or novel coating materials.
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[70] Scḧatzel K and Ackerson B J 1993Phys. Rev.E 483766
[71] Furukawa H 1984PhysicaA 123497
[72] He Y, Ackerson B J, van Megen W, Underwood S M and Scḧatzel K 1996Phys. Rev.E 545286
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